在本文中,我们探索如何在互联网图像的数据和型号上构建,并使用它们适应机器人视觉,而无需任何额外的标签。我们提出了一个叫做自我监督体现的主动学习(密封)的框架。它利用互联网图像培训的感知模型来学习主动探索政策。通过3D一致性标记此探索策略收集的观察结果,并用于改善感知模型。我们构建并利用3D语义地图以完全自我监督的方式学习动作和感知。语义地图用于计算用于培训勘探政策的内在动机奖励,并使用时空3D一致性和标签传播标记代理观察。我们证明了密封框架可用于关闭动作 - 感知循环:通过在训练环境中移动,改善预读的感知模型的对象检测和实例分割性能,并且可以使用改进的感知模型来改善对象目标导航。
translated by 谷歌翻译
For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques. * Equal contribution. Order was determined by coin flip.
translated by 谷歌翻译
For a number of tasks, such as 3D reconstruction, robotic interface, autonomous driving, etc., camera calibration is essential. In this study, we present a unique method for predicting intrinsic (principal point offset and focal length) and extrinsic (baseline, pitch, and translation) properties from a pair of images. We suggested a novel method where camera model equations are represented as a neural network in a multi-task learning framework, in contrast to existing methods, which build a comprehensive solution. By reconstructing the 3D points using a camera model neural network and then using the loss in reconstruction to obtain the camera specifications, this innovative camera projection loss (CPL) method allows us that the desired parameters should be estimated. As far as we are aware, our approach is the first one that uses an approach to multi-task learning that includes mathematical formulas in a framework for learning to estimate camera parameters to predict both the extrinsic and intrinsic parameters jointly. Additionally, we provided a new dataset named as CVGL Camera Calibration Dataset [1] which has been collected using the CARLA Simulator [2]. Actually, we show that our suggested strategy out performs both conventional methods and methods based on deep learning on 8 out of 10 parameters that were assessed using both real and synthetic data. Our code and generated dataset are available at https://github.com/thanif/Camera-Calibration-through-Camera-Projection-Loss.
translated by 谷歌翻译
政策梯度方法被广泛用于学习控制政策。它们可以轻松地分配给多名工人,并在许多领域中达到最新结果。不幸的是,它们表现出很大的差异,随后遭受了高样本的复杂性,因为它们在整个轨迹上汇总了梯度。在另一个极端情况下,计划方法,例如树木搜索,使用考虑未来LookAhead的单步过渡来优化策略。这些方法主要用于基于价值的算法。基于计划的算法需要一个正向模型,并且在每个步骤上都是计算密集型的,但更有效。在这项工作中,我们介绍了SoftTreemax,这是将树搜索整合到策略梯度中的第一种方法。传统上,针对单个状态行动对计算梯度。取而代之的是,我们基于树的策略结构在每个环境步骤中利用树叶的所有梯度。这使我们能够将梯度的差异减少三个数量级,并与标准策略梯度相比,从更好的样本复杂性中受益。在Atari上,与分布式PPO相比,SoftTreemax在运行时的表现高达5倍。
translated by 谷歌翻译
服务监视应用程序不断生成数据以监视其可用性。因此,实时和准确地对传入数据进行分类至关重要。为此,我们的研究开发了一种使用Learn ++来处理不断发展的数据分布的自适应分类方法。这种方法顺序预测并使用新数据更新监视模型,逐渐忘记了过去的知识并确定了突然的概念漂移。我们采用从工业应用获得的连续数据块来逐步评估预测变量的性能。
translated by 谷歌翻译
机器学习已被用来识别脸上的情绪,通常是通过寻找8种不同的情绪状态(中性,快乐,悲伤,惊喜,恐惧,厌恶,愤怒和鄙视)。我们考虑两种方法:基于面部标志的功能识别和所有像素的深度学习;每个产生总体准确性58%。但是,他们在不同的图像上产生了不同的结果,因此我们提出了一种结合这些方法的新的元分类器。它以77%的精度产生更好的结果
translated by 谷歌翻译
云数据中心的数字和大小都在成倍增长。这种增加导致网络活动激增,可以更好地避免交通拥堵。最终的挑战是两个方面:(i)设计算法,可以对给定数据中心的复杂流量模式进行定制;但是,与此同时(ii)在低级硬件上运行,具有有效拥塞控制(CC)所需的低潜伏期。在这项工作中,我们提出了一个基于强化学习(RL)的CC解决方案,该解决方案从某些交通情况中学习并成功地将其推广到他人。然后,我们将RL神经网络政策提炼成二进制决策树,以实现与RDMA实时推断所需的$ \ mu $ sec决策延迟。我们在真实网络中部署了NVIDIA NIC的蒸馏政策,并展示了最先进的性能,同时平衡所有测试的指标:带宽,延迟,公平和数据包下降。
translated by 谷歌翻译
监测草原的健康和活力对于告知管理决策至关优化农业应用中的旋转放牧的态度至关重要。为了利用饲料资源,提高土地生产力,我们需要了解牧场的增长模式,这在最先进的状态下即可。在本文中,我们建议部署一个机器人团队来监测一个未知的牧场环境的演变,以实现上述目标。为了监测这种环境,通常会缓慢发展,我们需要设计一种以低成本在大面积上快速评估环境的策略。因此,我们提出了一种集成管道,包括数据综合,深度神经网络训练和预测以及一个间歇地监测牧场的多机器人部署算法。具体而言,使用与ROS Gazebo的新型数据综合耦合的专家知识的农业数据,我们首先提出了一种新的神经网络架构来学习环境的时空动态。这种预测有助于我们了解大规模上的牧场增长模式,并为未来做出适当的监测决策。基于我们的预测,我们设计了一个用于低成本监控的间歇多机器人部署策略。最后,我们将提议的管道与其他方法进行比较,从数据综合到预测和规划,以证实我们的管道的性能。
translated by 谷歌翻译
支持向量回归(SVR)的古典机器学习模型(SVR)广泛用于回归任务,包括天气预报,股票市场和房地产定价。但是,SVR的实际可实现的量子版本仍有待配制。我们设计了基于退火的算法,即模拟和量子古典的混合动力车,用于训练两个SVR模型,并比较他们对Python Scikit-Greats包的SVR实现和基于SVR的最新算法的实证性能面部地标检测(FLD)问题。我们的方法是为训练SVR模型的优化问题推导出二次非判断 - 二进制制定,并使用退火解决这个问题。使用D-Wave的混合求解器,我们构建了一项量子辅助的SVR模型,从而展示了关于地标检测精度的古典模型的略有优势。此外,我们观察到基于退火的SVR模型预测与通过贪婪优化程序训练的SVR模型相比具有较低差异的地标。我们的工作是一个概念验证示例,用于使用小型训练数据集将量化的SVR应用于监督的学习任务。
translated by 谷歌翻译
Camera calibration is a necessity in various tasks including 3D reconstruction, hand-eye coordination for a robotic interaction, autonomous driving, etc. In this work we propose a novel method to predict extrinsic (baseline, pitch, and translation), intrinsic (focal length and principal point offset) parameters using an image pair. Unlike existing methods, instead of designing an end-to-end solution, we proposed a new representation that incorporates camera model equations as a neural network in multi-task learning framework. We estimate the desired parameters via novel camera projection loss (CPL) that uses the camera model neural network to reconstruct the 3D points and uses the reconstruction loss to estimate the camera parameters. To the best of our knowledge, ours is the first method to jointly estimate both the intrinsic and extrinsic parameters via a multi-task learning methodology that combines analytical equations in learning framework for the estimation of camera parameters. We also proposed a novel dataset using CARLA Simulator. Empirically, we demonstrate that our proposed approach achieves better performance with respect to both deep learning-based and traditional methods on 8 out of 10 parameters evaluated using both synthetic and real data. Our code and generated dataset are available at https://github.com/thanif/Camera-Calibration-through-Camera-Projection-Loss.
translated by 谷歌翻译